

Exceptional service in the national interest

Constructing Optimal Surrogate Models for Bolted Fasteners in Multiaxial Loading

Ernesto Camarena, Anthony Quintana, Victoria Yim

Introduction

- Simulations of structural systems in adverse environments
- Prohibitive computational burden of hundreds of fasteners
- Enormous length scale differences
 - System size, O(1e3 mm)
 - Bolt size, O(100 mm)
 - Thread size , O(1 mm)
- Common fastener modeling
 - So-called "Plug"
 - Analysts rely on pure tension data: no other load angles

Motivation

- Research questions:
 - How well do plug models work for an arbitrary loading pull direction?
 - How can plug modeling be modified to improve predictive behavior?
- Solution--Compare plug model to:
 - Experiment data at various load pulls
 - A fully threaded FE model

Methodology: Overview

Calibrate Numerical Hardening Curve to Experiments

- Implicit solve, no contact
- 0° load angle (tension only)

Numerical Plug Model

- Explicit w/ contact
- 0°, 30°, 60°, 90° cases
- Compare w/ experiments@ SNL

Numerical Threaded Model

- Explicit w/ contact
- 0°, 30°, 60°, 90° cases
- Compare w/ experiments
 @ SNL

Compare Plug vs. Threaded Model

• 0°, 30°, 60°, 90° cases

Methodology: Experiment Data

- Multiaxial fastener test setup
 - Setup allows for displacing at various angles
- Fastener details:
 - 18-8 Stainless steel
 - UNF thread type

Methodology: Geometry and Mesh

- Geometry
 - Plug uses relatively simple geometry
 - Tensile stress radius
 - Threaded model created in slices along helix
 - Fully 3D model
- Mesh
 - Refined regions near fastener
 - Coarse mesh for upper and bottom bushing

Methodology: Constitutive Model

- Elasticity: Young's Modulus = 30e6 psi, Poisson's Ratio= 0.3
- Plasticity
 - Isotropic Hardening
 - Multi-linear elastic-plastic hardening curve
 - Yield stress = 93e3 psi
 - Yield Surface retains its shape and is symmetric about the origin
 - Increases uniformly as the material deforms plastically
 - Rate independent

Methodology: Failure Criteria

- Hardening Curve Definition: Multi Linear Elastic-Plastic (MLEP)
 - Linear piecewise hardening curve defined with discrete pairs of equivalent plastic strain (EQPS) and yield stress.

$$D_{ij} = D_{ij}^{e} + D_{ij}^{P}$$

- Failure Models
 - Element death based on EQPS limit.
 - Ductile Failure Model (ml_ep_fail)
 - Failure in a given element initiates when its tearing parameter (t_p) reaches a critical value. The element stiffness then decreases with increasing crack opening strain (strain in the direction of the max principal stress).

Methodology: Boundary Conditions

- Basic Plug
 - 0° case: only +z displacement
- Plug with Bushings & Threaded Model
 - 0° case:
 - Displace +z face of upper bushing
 - Fixed lower z face of bottom bushing
 - 30°, 60°, and 90° case:
 - Displace +x face of upper bushing
 - Displace +z face of upper bushing
 - Fixed lower –x face of bottom bushing
 - Fixed lower z face of bottom bushing

Methodology: Post-Processing

Methodology: Numerical Procedures

Implicit vs. Explicit

- In order to account for the frictional contact between the plug and bushing an explicit model is required
- For calibration purposes, the basic plug is analyzed using both implicit and explicit models
- The hardening curve developed for the plug with bushing and threaded model are based on the this basic plug

Results: FE vs. Experiments

- Element death on EQPS
- Plug model radius: tensile stress area

Results: FE vs. Experiments

- Element death on EQPS
- Plug model radius: tensile stress area

Results: Ductile Damage Failure Model

a) Plug Model

b) Threaded Model

ml_ep failure shown

Results: Load Angle vs. Displacement

Results: Parameter Studies

 Various studies including: Effect of preload, friction, and yield stress

a) Initial bushing gap

b) Plug radius, r

Conclusion

- Plug model comparisons to:
 - Experiment data
 - A fully threaded FE model
- Research answers:
 - Plug models compare favorably for overall load-displacement behavior
 - Agreements to experiments were possible when load projection was considered
 - The failure models considered do not fully capture trends presented in experimental data

Mentor Team

Sandia National Laboratories

Jeffrey Smith

Peter Grimmer

John Mersch

John Emery

Cranfield University, UK

Gustavo Castelluccio

Acknowledgments

This research was conducted at the 2018 Nonlinear Mechanics and Dynamics Research Institute hosted by Sandia National Laboratories and the University of New Mexico.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Backup Slides

a) Plug model with initial gap of 0.04"

Methodology: Post-Processing

$$k_{tension} > k_{shear}$$

 $\theta < 45^{\circ}$

$$F_{tension} = k_{tension} * \delta$$

 $F_{shear} = k_{shear} * \delta$
 $F_{tension} > F_{shear}$

Backup Slides

Von Mises Yield Criterion:

$$\sigma_{vm} = \sqrt{\frac{1}{2}[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]}$$
(Where $\sigma_{1,2,3}$ are the principal stresses, respectively)

- This defines a cylindrical 3D yield surface in principal stress space.
 - Axis is along hydrostatic stress states
- σ_{vm} comes from deviatoric stress S:

$$\sigma_{ij} = S_{ij} + \frac{1}{3}\sigma_{kk}\delta_{ij}$$

$$J_2 = \frac{1}{2}S_{ij}S_{ij}$$

$$\sigma_{vm} = \sqrt{3J_2}$$

- 1.5e+05 - 100000 - 50000

30-deg with tear

60-deg

60-deg with tear

90-deg

90-deg with tear

